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i Presentation Outline

= Hypersonic magneto-hydrodynamic (MHD) generator

= Dynamic programming based closed-loop optimal
control approach review

= Reinforcement learning/adaptive critic based design
= Conclusions
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i MHD Generator Model

= Assumptions

= One-dimensional steady state flow
= Inviscid flow

= No reactive chemistry

= Low Magnetic Reynolds number

= x-¢ equivalence



Flow Equations

= Continuity Equation
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x - Coordinate along the channel
o - Fluid density

dx u - Fluid velocity
A - Channel cross-section area

= Force Equation
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P - Fluid pressure

k - Load factor

o - Fluid conductivity
B - Magnetic field

Q), - Electron Hall parameter
Q). - lon Hall parameter



Flow Equations...
= Energy Equation
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u
d(7/€ + 7) - & - Fluid internal energy
ou y =—k(1-k)ou"B*+Q,
X

0,° Energy deposited by
the e-beam

= Continuity Equation for the electron number
density

n, - Electron number density
{ n,v } J, - Electron beam current
1+ (1-4)Q Q. _ 2,8, _ gt e, - E-beam energy
dx eY.Z ) Z - Channel width
Y - lonization potential




Performance Characterization
J=pre,) =11+ po[M (x,) - M ]+
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Attaining prescribed values of flow variables at the channel exit
(Mach number, Temperature)

Maximizing the net energy extracted which is the difference
between the energy extracted and the energy spent on the e-beam
lonization

Minimizing adverse pressure gradients

Minimizing the entropy rise in the channel

Minimizing the use of excessive electron beam current



Predictive Control Based Optimal
Control

= Features of our optimal controller design technique
= Works for both linear and nonlinear systems
= Data-based
= Finite horizon, end-point optimal control problem
= Equivalent to time (position) varying system dynamics

[1] Kulkarni, N.V. and Phan, M.Q., “Data-Based Cost-To-Go Design for Optimal Control,” 4144 Paper
2002-4668, AIAA Guidance, Navigation and Control Conference, August 2002.

[2] Kulkarni, N.V. and Phan, M.Q., “A Neural Networks Based Design of Optimal Controllers for
Nonlinear Systems,” 4144 Paper 2002-4664, AIAA Guidance, Navigation and Control Conference, August
2002.



Dynamic Programming Based State
Feedback Control

= Using the dynamic programming principle to design
the controllers along the channel

An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first
decision.

- Richard Bellman

= Assume available sensors along the channel



Dynamic Programming Based
State-Feedback Architecture
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Controller

Details of the Control Architecture
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Using Subnets to Build the Cost Function

Network = Continuously spaced e-beam windows
each having a length of 0.5 cm
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= Need subnets up to order 50
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Formulation of the Control Architecture:
Neural Network Controller
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Reinforcement Learning/Adaptive Critic
Architectures

Need to account for model uncertainties and disturbances or noise .

Reinforcement Learning/Adaptive Critic Architectures are well-
suited to handle model uncertainties and noise

The existing design serves as a good starting point for
controller/model updating

The best features of the proposed dynamic programming based
approach and the adaptive critic approaches can be combined



Value Function Based Reinforcement
Learning

Consider a system with a discrete state and action space
Initial the cost-to-go function or the Value function for each state:
Visy)

Initialize the action policy (controller) for each state : n(s,)
Simulate an episode starting with a random initial state

For each state occuring in the episode update the Value function
using the principle of dynamic programming

For each state occuring in the episode update the policy to
minimize the value function

Simulate another episode and loop



Implementing Value Function Based
Reinforcement Learning

For a given episode:

|
|
t=T-2 t=T7-1 t
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Implementing Q-Function Based
Reinforcement Learning

For a given episode:

|
|
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Forward direction >
Given s, Given s, Get s,
Choose a, = n(s,) Choose a, = n(s,) Get r,.=rs;)
Getr,=r(s,a,) Getr,=r(s,a,)
< Backward direction
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Q-Function Based Controller Updating
the MHD Channel

Develop the subnets from the available simulation package that
captures the known physics

Design the optimal controllers using the dynamic programming
based control architecture.

Obtain two layer network equivalence of the optimal
controllers and the action dependent critics

Provides good base line controllers & action dependent critics

Improve these optimal controllers and the action dependent
critics from real time data to account for stochastic factors
(model uncertainties and disturbance or noise)




Implementation Detalils

From sensor 4 to the end of the channel (Assume 4 sensors in the
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Implementation Detalils

" With available real data calculate the new available values of
expected cost-to-go function from sensor 4 to the end of the
channel

® Update the baseline action dependent critic from sensor 4
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From sensor 3 to the end of the channel
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From sensor 3 to the end of the channel
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Updating the Sensor 3 ADC with Real Data

Critic Updating: Uses principle of optimality

E [Q( wsens0r3, al,... aj)]desired = E[U( wsensor3, al,... aj)] t+E [Q*( wsensor4, al,... aj)]

I I I

Used to update the Available from the Available from the
baseline sensor 3 ADC real data updated sensor 4 ADC
Controller Updating: Uses backpropagation

Backpropagate through the updated critic to get OF [Q (Wsens0r3’67 )]
oo

to update the controller



Critic-Controller Updating

Critic Updating:
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Same as the controller updating from sensor 4



i Conclusions

= Developed a neural network based optimal controller
architecture for the hypersonic MHD channel

= Data-based approach
= Implemented open loop and closed loop designs

= ADHDP based design to account for stochastic factors
In progress



